If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-2h-80=0
a = 1; b = -2; c = -80;
Δ = b2-4ac
Δ = -22-4·1·(-80)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-18}{2*1}=\frac{-16}{2} =-8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+18}{2*1}=\frac{20}{2} =10 $
| w/8+47=50 | | 1/2(2h-4)h=80 | | 28+5h=83 | | h+76=96 | | 2=c/7-2 | | 8h+7=47 | | 8y-8=72 | | 5/14n-8=2 | | 8y-8=48 | | 1/5s=16 | | 25z+62=212 | | 3a-3/6=4a-1/15+2 | | 14+7x=28 | | t=749-653 | | n-13/4=41/2 | | b/5+169=185 | | 0.6x-5=0.1x+5 | | n^2+11n+12=0 | | 42=5h-13 | | -7v=17 | | 32/r=4 | | 3a-3/6=4a=1/15+2 | | h/8=5 | | t+66=4t | | 5=g/9-5 | | 10m=41m+5 | | 5m+23=88 | | 4+x+x=36 | | 67-m=14 | | 6(x-5)^2+1=19 | | 13x÷2x=0 | | w/6+45=49 |